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Abstract

Let m I rflog11+2floglogn.%fl. Let r' denote the set of graphs with :

vertices (1,2,... n) , m edges and minimum degree 1. We show that i f a

random graph G is chosen uniformly from r' then

/ 0 if c n ::> -0, sufficiently slowly

i. Pr(G has a perfect c
nmatching) e -e /8 if c~ n :> c

1 if cn ZO +-

* MeO- also shown that if a random graph G with vertices {1,2,...,n) is

constructed by randomly adding edges one at a time then, almost surely, as

soon as G has degree k, G has Lk/2i disjoint hamiltonian cycles plus a

disjoint perfect matching if k is odd, where k is a fixed positive integer.

'it

DiOr I /.
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Let G denote a random graph with vertices j1,2,...n and m edges where

each of the possible graphs is equally likely to be chosen.
mI

Erdos and Renyi [5] showed that if m-gnlogn+c n then

( 0 if c a>--

(1.1) li Pr((Gn,) - Ln/2J) ee "2 c if cn -> c

I if C n am> +M

where u(G) denotes the maximum cardinality of a matching in a graph G.

The probabilities in (1.1) are the limiting probabilities for

8(GM)>i where 6(G) denotes the minimum vertex degree of a graph G. Thus

Erdos and Renyi proved (1.1) by showing

(1.2) lim Pr((G ) .. In/21) 1."(n,in,

Where G"1  denotes a random graph chosen uniformly from the set of graphsn,m

with vertices (1,2, •. .,n, a edges and minimum degree 1.

The first result of this paper is to tighten (1.2) and prove

Theorem 1.1
P I

Let m X -nlogn+fnlglogn Cnn, then

0 if Cn am> -M,sufficiently slowly

l(1)m Ln~ -4 1/8 if 0 nmclira Pr(u(Gn, , () Ln/2]) e-e*C8 t n">c?'':.

n--"-" "

I ifca C n> 
-

n
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There is at present, an unfortunate restriction ICnIUO(loglogn) for

cn -> -. We cannot at present relax this because of the difficulty of

dealing with the conditioning of O(Gn 3 ) ) 1. Note that some restriction

must be placed on the growth rate of IcnI when cn -> -m as

P (1) Ln/2J) I
PrU( , rn, 21)

Our second result is a generalization of one stated by Komlbs and

Szemer~di [13). To state this we need to define the following: a graph
process Cn " (Go , G1 , ., , .. ) is a Markov process in which G is a

graph with vertices Vn  [1, 2, ... n1 and edges E. where IE.l -. GM
"(2)_E uiomya rnc n -

is obtained from GM- 1 by choosing e mn  uniformly at random and

putting E n E3 _L~fel. Note that Qm above is distributed exactly as Gn, -*

For a graph property I (usually monotone) and graph process G let

T(r,a) - :in(m G en).

In particular let

ilk  'The minimum degree of G is at least k'

and

1k - 'G has Lk/2J disjoint hailtonian cycles plus a disjoint

matching if k is odd •-

Our second result is

Theorem 1 .2 If k is a fixed positive integer then

lim pr(T(r,ik) - T(rk)) - .

Komlbs and Szemer6di stated this result for k = 2. Note that Theorem

1.2 is most clearly stated as: if we randomly add edges one by one then

when the graph constructed has minimum degree i then it a.s. has Lk/2j

disjoint hamiltonian cycles plus a disjoint matching if kc is odd.

" "
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For other results on matchings and hamiltonian cycles in random

graphs see Bllobas [2], Bollooas, Fenner and Frieze [4), Fenner and

Frieze [7] [8], Frieze [10] [11] [12), Richmond, Robinson and Wormald

[14], Richmond and Wormald [15], Robinson and Wormald [16], Shamir [17),

and Shamir and Upfal [18] [19].

Notation

For a graph G we let V(G) denote its set of vertices and E(G) denote its

set of edges.

For vcV(G), dG(v) is the degree of v, and for S CV(G), NG(S) I S

there exists weS such that Iv,wlt E(G)I.

For non-negative x, V (G) - lvcV(G):d (v)z1. For S C V(G), G[S] -

(SEs) where ES IeeE(G):e C SI.

Let D = DI(G) be the set of vertices of degree I in G and let *(G) =

G[V2 (G)-NG(D 1 )]. , ,...

For ecE(G) we let G-e - (V(G), E(G) - {e1) and for eA E(G) we let G+e

(V(G), E(G) {1.-':

For 0<p < 1, Gn, p denotes a random graph with vertices I1,2,...,n.

in which each of the (1) possible edges is chosen with probability p and

not chosen with probability i-p.

*. * *. *. .. . . . . . . . . . . . . . . .. .* - . .
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2.
Throughout this section m nlogn/4 + nloglogn/2 +c n vhere for the .'-

n

moment we assume Ic 1+e-. The proof of Theorem 1.1. is obtained by a

sequence of lmms.

Lemma 2.1

Let G G n , LARGE -Vlogn/ oo(G) and SMALL V(G)-LARGE.

Consider the following conditions:

(2. la) No cycle of length 3 contains 2 small vertices;

(2.1b) No path of length 2 contains 3 small vertices;

(2.1c) S SV(G), 4 < IS I < 7, IS A SMALLI > 3 implies G[S] is not

connected;

(2.ld) ISMALLI < n' 5 5 ;

(2.le) $ i S LARGE, IS1 < n/logn implies ING(S)l > (logn/1OOO)tSI;

(2. 1f) No vertex has degree exceeding 5logn.

Then for n large

(2.2) Pr (Gn , fails to satisfy (2.1)) < n- ' 3 5

n m

Proof (Outline)

* To estimate the probbilities for (2.1a), (2.1b), (2.1c), (2.1f) we

simply compute the expected number of triangles containing 2 small

vertices etc.. 'his is tedious but straightforward.

To deal with (2.1d), (2. le) we let p a (logn/2 + loglogn + 2cn)/n and

* consider the random graphG
n ,ppAn|E(Gn )I is a binomial random variable with parameters ()and p ' -

it is easy to verify that -'

(2.3) Pr(IE(G n )l m) > 1/2(nlogn) 1/2 for n large.

j,' . " o % ". .. % . . % % . , . .% % ° ,%p *=,% " =•.=.. .% . "% . . . . ° • ..... - '. . ., .
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* Al so

(2.4) G conditional on IE(G )I m is distributed exactly as
n p n p

Th us for any property 11

(2.5) Pr (G~ has 11) < 2Cnlogn) 1 /2 Pr (G ha s nt)n 'm n p

We show next that

e.55
(2.6) Pr(G3~ violates (2.1d)) =O(n-' for sante c> 0

and

(2.7) Pr(G~ n~ violates (2.l1e)) =O~n 6 )

Lemma 2.1 is completed using (2. 5), (2. 6) and (2.7).

Proof of (2.6)

PrCG violates (2.1d)) < Pr~there exists S. s ISI Fn 1 and each
n p

v e S is adjacent to fewer than logn/100 vertices in V(G)-S

n fl An~.ll.2 0 n,-c k -

k=0

Proof of (2.7)

We first cosdrtecs S logn) and note that if (2. le)

fails then, where s = ISI, G(S UNG(S)] has at most (logn/1000 + 1)3

vertices and at least (logn/200)s edges. The probability of this

happening is, for large n, no more than

n/(logn) 2 rrk

nT fl 2~))i (1-P) 2 0 2n6 )

0..-;.) 2 * a. *.O - * .*. ~*** - *.' :
r k .* . ? ~ .... 0 *** . . . -*
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S3
For s > n/(logn) 3 we need not restrict S gLARGE and then the probability

that (2. le) fails is no more than

n/lon n ( logn/10003 0)s (nsk
>. (nog)1000) (D-s)k (1 -(l-p) s)k (1-) s ~' k )

I - ) 0 )

s=n/(logn)3  kzO

- 0 (n.en/(lgn) 3).

Let 50= 0 O (n) denote the set of graphs with vertices (1,2,...n) and m

edges. Let 1 (n) denote the set of graphs in 90 that satisfy (2.1).

We prove the following lemma on the neighborhoods of sets of vertices:

Lemma 2.2

Let G I and XCE(G) be a matching of G that does not meet any small

vertex. Let Hz*((V(G), E(G)-X)). Then for n large we have -A"

(2.8) Or i SCV(H), ISI < n/8000 implies INH(S)I>ISI.

Proof

Let T z NG(D1) and let S1  S SA SMALL and S2  S-S 1. We note first that

(2.1) implies that no large vertex is adjacent to 3 =nall vertices and no

large vertex is adjacent to 3 members of T. Hence

(2.9) INH(S)I > INi(S1)I - Is21 + ING(S2)I - 31S21 - min(IS 1 ,21S 2 1)

ktere the factor 3 in (2.9) accounts also for the deletion of X.

We must now prove that

(2.10) INH(Slt > 1311.

Note next that (2.1b) implies Hi 1] consists of isolated vertices and

edges. So let {u,v) be any edge of HES 1 3. Then (2.1) implies

(2.1la) neither u nor v ave a neighbor in common with any other vertex



(2.11b) neither u nor v have a neighbor in T.

Also (2.1a) implies that;

(2.11c) u and v have no common neighbor.

Now consider the components of the graph induced by the isolated

vertices I of H IS) and their neighbors in G. Let C be the set of

* vertices Of such a component.

(2.11d) ICr1I a 1 implies, by (2.1c), that ICnTI <1.

To deal &th the case I C r% II > 2 we note that if u,v £I then by (2.l1c)

*(2.l1le) ING ((u))CTI < 1

(2. 11f) N G Qu)) 'N G(Ivl if Or implies N G (Iu))A T =(.

*Using (2.11) plus the fact that S 1CV 2 (G) yields (2.10). We now Use

-this in (2. 9).

Case 1: IS11 > ~2IS 21.

From (2.9) and (2.10) and (2.1d) and (2.1e) we obtain

'NH (S)I 1 IS1 1I-'S 2 1 + ((lgn/1000) -5)13 21

-ISI + ((ogn/1000) -7)1S 21.

Case 2: IS I <2 IS I < 2n/logn

*From (2. 1), (2. 9) and (2. 10) we bav e

INH (S)I1 > I11 is 1S + ((l-ogn/1000) -3)1S 21 I 11

-S +5 M (ogn/1000) - 5)1S I - 1S11).

Case 3: IS,1  2 IS2I, n/logn < 1321 < n/8000

Choose 3 C such that IS3 n/logn, then INH(S 2 )l > NH(S 3 )I-IS2 t

> 7n/8000 Using (2.1le).

Then from (2.10) and (2.11) we obtain

N(S is I s11 I~' 7n/8000 -31S321 S1

> 131 (7n/8000-71S 2 1).

We deduce from these 3 cases that the conclusion of the LAmma holds.
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Next letR be the set of graphs which contain 2 vertices of degree 1,

with a common neighbor. Clearly no graph belonging to' has a perfect or

near perfect matching. Our aim is to show that the main obstruction to a

graph of minimum degree at least one having a perfect or near perfect

matching is that the graph belongs toW.

Lemma 2.3

Suppose G c 92 z [G c i\"*p : m(G) < LIVI(G)I/2J1 and we remove a set of

edges X as in the statement of Lemma 2.2 to obtain a graph G1. Let be

the set of maximum cardinality matchings of G which cover every vertex of
1

degree 1. Let Z be the set of vertices which are left uncovered by at

least one member M of M, i.e. not incident with any edge of M. For v c Z

let Z(v) be the set of vertices w for which there exists M C such that

both v and w are uncovered by M. Then

(2.12a) if w e Z (v) then w is not adjacent to v.

(2.12b) IZI > n/8000 and IZ(v)I > n/8000 for v c Z.

Proof

If (2.12a) is false, then we have the contradiction that {v,w) can be

added to any M €'l leaving v and w uncovered.

To prove (2.12b) we note that Z(v)CZ and so it suffices to prove

IZ(v) I > n/8000 for v c Z. Note first that H #(G1) satisfies a(H) > 1

and that as G i we have IV(H)j - 2u(H) = IVI(G 1)I -2u(G 1) > 2.

Lt v c Z and M iTR leave v uncovered and let SAO be the other

vertices left uncovered by M. If M' M M E(H) then (v) S C V(H) and M,

is a maximum cardinality matching of H. Let S1 be the set of vertices

reachable from S by an even length alternating path with respect to M',

... . . . .. .. .. . . ... *. *~ > 2 . . * , .. * -* . . °. - ... .o, - . ., -° -. ° °..., -.
... .- .-.. '-. ',. -..-.. -.. * '** .*-- .- o. .*.....**. ... '.°.'...- .' .--. *--. *.*. ***o.'..*. '..'..-.-..--.".-.o-...'. ...- .*- " - .* .- . .o.". -'..-° .- . "... .-.-. - . - .-..-
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S S1 here Then Z(v) 1 ( S1 actually) and we prove the lemma by

showing

(2.13) INH(Sl)I < IS11

and applying Lemma 2.2.

If x c NH(S 1 ) then x A S and so there exists Y, such that (x,y 11 C

M'. We show yl C S 1 which will prove (2.13). Now there exists Y2  C e1

such that {x,y 2 } c E(H). Let P be an even length alternating path from

some s c S terminating at y2 " If P contains {x,y 1 } we can truncate it to

terminate with (xyl), otherwise we can extend it using edges (Y2 ,x) and

{x,y 1 ).

We can now prove that, excluding isolated vertices, if Gn m h then

it a.s. has a perfect or near perfect matching. We use a colouring.

argument introduced by Fenner and Frieze t7).

Lemma 2.4

For n large

(2.14) Pr(u(Gn,m) < LlVi(Gn,m)t/2J I Gn,m A)< n--35

Proof

Let a=64xlO6 and u=falognl. We show that for n large

(2.15) 1 / 0 < 2(1-a-1

" which in conjunction with Lemma 2.1 proves (2.12).

For each G c go consider the (in) ways of coloring w edges green and

edges blu. For a given coloring we let Gb denote the subgraph

spanned by all vertices of G and the blue edges only. Let A denote the

*. number of blue-green colorings which satisfy

- (2.16a) 1 (Gb) Z U(G) < 11Vl(G)I/ZJ

(2.16b) (2.12b) holds for H *(G b ).



We show that

(2. 17a) a I 2zl ->(n))".

where 2(n) -0((lcgn) 2 /n) and that

(2.17b) A < jI(g(l-a l  ".7

which will imply (2.15).

Proof of (2.17a)

If G e S2 1 let M be a fixed maximum cardinality matching of G. Now there

are (1 - e(n))'() ways of choosing u) green edges X such that (i)XA=4 ,

(ii) X does not meet any small vertices and (iii) X is itself a matching

(this is the only place that we need (2.1f)). For such colorings (2.16)

must hold, which proves (2. 17a) .

Proof of (2.17b)

Consider a fixed blue subgraph G and count the number of ways OO(G b ) of

adding * green edges so that (2.16) holds. If (2.16b) does not hold then

9=0. If (2.16b) holds then in order for (2.16a) to hold we must avoid

adding an edge (v,w} where w e Z(v) as in Lema 2.3. But there are at most
1 n

( -a-) C(2 ) ways of doing this and (2. 17b) follows.

To study the behavior of GO ) we use the following:
n m

Lemma 2.5 ""

Let H be the graph obtained from Gnm by deleting isolated vertices

and re-labelling the remaining vertices i < i < ... < i as 1, 2, ... , h1 2h
respectively. Then for a fixed value of h, H is distributed as G h m

Proof

Each such H is obtained from the same number of

-i3

~ * * .* .* .~ ~ % .' ~ . . .- - 2 '~ ** * * * *.
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The following Lemma will enable us to pass, via Lemma 2.5, from

results concerning G[Vl(Gn )] to results concerning G
1n~m n om

Lemma 2.6

Let t = e- 2 c n1 /2 /lo,nl, then for large n -. "

(2.18) Pr( IV (Gnt)I n) > n

Proof

Let p = (logn/2 * loglogn + 2 cn)/n. We show first that for n large

(2.19) 1 =a Pr(IVi(Gn,p)I n) (logn) 1 ' 3 n " 2 5 .

Now 11 (nt)r(A)Pr(BiA) where

A = 'vertices n+1, ... , n+t are all isolated,'

and

B z 'vertices 1, 2, ... , n are all non-isolated.-

* For n large

Pr(A) =(1-p)( 2t > (t/n) (1-o(0)) '

and

Pr(B'A) Pr(d(G > 1) > (1)d > 1)n.

n,p

The latter inequality is a consequence of

Pr(dnp (k) > II dG n(i) > 1, iz, 2, ... , k) >Pr(dG n  (k. ) > 1)

which follows from the FKG inequality [93.
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Thus,
PrBI) (1_(1_p)'l-)n > (1-tln)n (1-0(1))

Thus, 11 (nlt) (t/n)t(l.t/n)n (1-o(1)) and (2.19) follows on using

Stirlings inequalities.

Although (2. 19) does not give (2. 18) directly it does show

(2.20) there exists ml, Ii,-I1 >2n lo1 gn such that

Pr(IV 1(Gnt )1 2)> (logn)/n"1/ .

1/2This is because Pr(IIE(G )I-ml > 2n ln) < 1/n, which follows fromne~t,p

the Chernoff bound.

To obtain (2.18) from (2.20) we define

S(m') (G:V(G) x (1,2,...,n+t}, IV1 (G)I n and IE(G)I = m'), where we

assume throughout that Im'-mI < 2n1 / 2 1ogn.

For Gc(m) let a(G) z I(ecE(G): G-e c (W-1l.

We note

(2.21) m' > a(G) > ,,'-i(G)I.

Also

(2.22) a(G) z(()-m'+1) I M ('-1)I
Ge m')

as both sides of (2.22) count the number of pairs (G,e) where Ge (MI-1

e*E(G) and G~e e (in').

Now (2.21) implies

" (2.23) m'IS')i > a(G) >:'.

where n(m') is the expected number of vertices of degree 1 in a random

graph chosen uniformly from M)
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Next let

+-"am, Pr( 1V1 (Gn.,t,) -) - l(m' )I/ ,--2

It follows from (2.22) and (2.23) that

(2.24) OI/m' < RI/ml,1 Omm'-;l(ml))

where

Mi , -- m()-m'+l1( 2~ )--m1+1)
2 2

In order to apply (2.24) to "close the gap" between m and m, in

(2.20) we must estimate (l(').

We show first that if a(c) ( 1-lc/2)(I+o(I)) then, where p

" (lcn/2 + loglon + 2c)/n, nl cn n

(2.25) Pr( ID (G )I > on1  < (B/(c))" n l  
-

I n)tp - --

The above probability is no more than the probability that there

exists s roa(c)n'I 1 vertices, each of which is adjacent to at most one

of the other n-s vertices.

This latter probability is

1/2
< (") ( (1-p) n (n-s) p(1-p)n-s1) <

-. which implies (2.25).

We next ;ove the very crude lower bound

,1/2
(2.26) Pr( IV, (G 2,)l n) > • n 1 for n large.

'..-.-...... ,.. .. ....... .. %... ", , *. .' . ,.t***.,% % **-. % 5
5
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To do this, we poceed as in the proof of (2.19), using Gn,,, in
t o-

place of Gn , and define events A and B. Now Pr(A) > (t/n) l-o(l)) as
n+t ,p

before but we cannot use the FMC inequality to bound PI(B)A) which is

Pr(a(G,) > 1).

Instead, let now p logn/2n and then

(2.27) Pr(a(G )> 1) < Pr(6(G,) > 1) + Pr(IE(G p)I > i').
nop - - nm - np

We then use the FMC inequality as before to get a lower bound

1/2 -
Pr((G p) > 1) > (1-o(1)) e for n large.

The Oiernoff bound gives

2
Pr( IE(G )I > m') < e- n(loKlosn) /4lcnn,p

for n large. Using theie inequalities in (2.27) gives

1/2 " -
>-n / oPr(6(Gn ) > 1) > e /4 for n large.

This is easily good enough to prove (2.26). Now (2.5), (2.25) and

(2.26) together imply

1/2,
(2.27) Pr(IDl(Gntm,)I 1> on Ii/ (Gn+tmu,)In)

"1/2 /2 /2
C 2(nlagn) en  (Sl-(c))-:

* .~** 2.*2!*.
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Putting 0 v max(2,a(c)e) in (2.27) we easily obtain

(2.28) ) < 20n 1/2 for n large.

Using (2.28) in (2.24) we see that for large n

(2.29) -11 < /n1/2logn

where 0 depends only on a.

(2.20) and (2.29) together imply the Lemma.

For the remainder of this section t is as in Lemma 2.6 Now let

X I( Gnt,m) Lvi (%+t 1) /2J

Y : IV1(Gn~t,m)I : n;

n+t,m

Now Lemma 2.5 implies

Pr(t(Gn) Ln/2J) Pr(X!Y).

Now

lYPr(XlY) Pr(X CZ¥y) ) PrC-'Y)

-(Pr(XflY(oZ) *Pr(YfP!) -Pr(7g)Y(~l)/Pr(Y)

Howver, It follows from Lemma 2.4 (with n+t in place of n) and Lemma 2.6

that

'::7::
° .p° " *p • . . o ° - ,- *. .o-. o. . ** . ... * ,. * . = . o o ., - - . .. . . . . o.. , . . .. - . . . . .. . . . ".*'°• --" -. ., : ..,..' -., ,: , ..:' .'.-..,.. .... "Zi:'a:::.."-c ... -.' ". -'. * * _'...;.'-'._....-_-"_-.-_..'._--.-_.-
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Pr(f A ( YnZ) /Pr(Y) < Pr(ffA!)/Pr(Y) < n- .

-.- %

Similarly

PNXOYNZ)/Pr(Y) < Pr((2.b)/Pr(Y) <

and so we have

(2.30) li PrOa(MnM) = Ln/2J)
n~nm

1 im Pr (G I. V(G-")I

* Lemma 2.7

n Pr(Gn.t,m - . IV(G+t . I z n) .- /4 A

Proof

Note that although it is very easy to prove that

* i Pr(G fl~tI e) 1-e

the conditional result seems to require more work. We shall in fact first

prove the equivalent result for the random multigraph MG,t. defined
2mas follows: Let X a (1,2,...n+t) and let x C X be chosen at random so

2mthat each of the (nt) vectors is equally 1ikely to be chosen. Let MG(x)

be the multigraph with edges 1x2 i 1, x2 1} for ial,2,...,m. We use MGn+t..

to denote a random MG(x) chosen as above. Furthermore, the random graph

RGn4tm is obtained by taking MGn+t , deleting loops and replacing

multiple edges by single copies.
.',.'..'.'......' "...'...'...........................................,....,.."..."......-,...,..."...,.,..,..,.,,..-.,..,... ,,"....., .._-- ,. ,.'_,,,



18

We note first that

*Exp (nuber of isolated loops in MG 0 (n-1/2)l+ t ,m3

*and hence

*(2.31) Pr( IV (MG~+Q A IV (Rr. 0tm)I) -

Also

*(2.32a) Pr(IGn,m has more than 2 logn loops) - (n 1 /2).

(the number of loops in M.Gn~ is a binomial random variable

with parameters m and 2/(n-1)).

*(2.32b) Pr(MG,t has more than (logn)2 edge repetitions) (12

(the number of edge repetitions in G 3is dominated

probabilistically by a binomial random variable with para-

n+1
meters a and m(2~ **-

and s0

2) 1(~ /2.(2.33) Pr(IE(RG U~,m )I <m-2(logn)) On' .
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We note that

(2.34) if*' m IE(RG t )I then, for fixedm', RGt, is distributed

asGn+tm.

We now estimate

Pr( IV RGnt,)I = n) =z Pr( IV(Gn+t1,m,)I z n) Pr(IE(RGn+t , m) l m 
)

n~t~m

by (2.34)

.25°

> 1/2n 2 5  for n large, by (2.33) and Lemma 2.6.

It follows from (2.31) that

(2.35) Pr(IVI(MGnt,m)I z n) > 1/3n for large n.

Now it is easy to show that Pr(there exists vertex adjacent to 3

-1/2
vertices of degree 1 in MG n4t ) O 0(n' ).

Thus if we define j' "there exists a vertex with precisely 2

neighbors of degree 1" then

(2.36) lim Pr(MGnt ¢ I IV (MGn+t,m)l z n) -

Iim Pr(MG %tn' U IV (MG+t )I z n).

We now write

(2.37) Pr( IV )Iz n)

n-? #me I .m..
I.. . .... .. -. .. .... .. °-'
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I 3T Pr(MG M.e NG t.~l(d) Pr(MG . d
da

where

=: {de nt: 0 < d, ... < d.,

Z di= 2m and lfi:di > I1 =n
iz1

and 1 (d) is the set of multigraphs with vertices [1,2,.o.,n+t}, m edges

and degree sequence d.

Let now

-,2c 1//2 e, 5/12
(2.38) o {dc1: (a)Ill{i:d =111 -e n I /21< ,.

(b)l(i:ldi2m/n > 2m/noglognl < 2n/loglogn,

(a) dnt C5logn)

We show that

(2.39a) im (z Pr(-G (d))
nfefm d ea dea ntm

0- "

..... , . . .. , . .. .. , . ..... .... .,, .. .. ,.: . .... . , . .. .*, .* . ,,. . . . .. . . . . . ."-, . . . . . .
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(2.39b) li ; = 1c for dego.

n~a

We can then deduce, using (2.36) and (2.37), that

)In)-4 /8.(2.40) lir Pr(Gn+t l IVi(mGn+tm ) lIn) z 1-e-e

Proof of (2.39a)

In view of (2.35) we need only show that the probability that MGn+t,m

fails to satisfy any of the conditions in (2.38) is o(n1/4)

(i) (2.38c)

Here we simply verify that the expected number of vertices of degree

exceeding 5 logn is o(n" 2 5 ).

Here we simply verify that if D1 is the set of vertices of degree 1

in MG then
n.t m

Exp(IDlI) " Var(IDll) n l/ 2 e 2 c/2

and then use the Chebycheff inequality.

(iii) (2.38b)

Let z u 1/loglogn and a 2(1.)uvnl. Nw one can easily see, by

conditioning on vertex degrees, that for 1 < k < n/llogn and G z -M

PF d G(II) > al dG() > a, 1 < i <k)

< Pr(d (k+l) > a! d (i) z a, 1 < ± < k)
G G

I

. .. , -.. .. .-... - .-.-* . . . .. . .- .. .-, .. . .. .-,. . , - . . . . , . - .. .2-., . . ,. .-, .. -A , . . ,. ... . ... , . .-.. .. , -, ."
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2m-k r e-(2m.-- 2 -/k(=~ (23ka) (1/(n+t.k))r(ll/(n+t.k))2mkar < -(2m-ka)/3(n+t-k)

r>a r

2.

< -e" 2logn/13 for n large.

Thus Pr(there exist more than s=n/loglogn vertices of degree

exceeding a)

.n+t. e2slogn/13 :t:
n<- -ssg = 0(n t ) for any t > 0.
3Cs~ 

-

A similar argument deals with vertices of degree less than 2(1-C)m/n.

Proof of (2.39b)

To prove (2.39b) we need to be able to generate a random Gc TI1 (d)

. with probability

Pr(MG .G)/Pr(MG (d
n4.t,m n~t~m

(note that this is not the same for all GeOL,(d)).

We modify the method of Bollobis E1]. Thus, let dc% be fixed and let

W1, W2 , ... , Wn+t be disjoint sets with JW1 : di for izl,2,...,n+t. Let

n.+t
W = %j W and let the members of W be denoted as points. A configuration

F is a partition of W into m pairs of points called the edges of F. Let "

be the set of possible configurations and note that IcI z N(m)

U(2ml)/mt2. For peW1 let *(p) z i, for i 1,2,...,n+t and for FcC let

#(F) be the multigraph ({1,2,...,ntl, {((p),#(q)}:(p,q)cF}). Note that

We turn C into a probability space by giving each FcC the same

probability. This induces the required probability space on #( ). (Think

•,. ~ ' .*- ... ~-. . . . , ...-... • .. - . . .° .... .-.- .". , -. % " , . . " , . .' . . , , ' . ' - - , :, . ., . '. . . - . . . ** , , - t- - *. ,. '.a- .a. o . . t,.' ' . . . . - '. .' tfl. . . .,a .
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of generating MGn.t,m conditional on MGn.tIm ¢ gS(d) by taking di copies

of integer i for i a 1,2,...,n+t and then randomly permuting these 2m

integers and picking up edges from this sequence as usual. Note that this

is essentially how #(F) is generated - the k'th copy of integer i

corresponds to the k'th element of W).

To prove (2.39b) we define a random variable

X(i,j,k) 1 if, i < j, dG(i) = dG(j) 1 and {i,k}, {j,k} cE(G) and no

other vertex of degree 1 is adjacent to k in G where G =

*( F).

0 otherwise.

We shall use inclusion-exclusion to show that

(2.41) lim Pr(z X (i,j,k) > 0) = 1-e-e  /8

n - i,j ,k

which proves (2.39b) .

Let N3 = (1, 2, ..., n+t) and for S N3 let 1= Pr(X i,Jk) - 1 for

(i,j,k) S). The definition of X(i,j,k) implies

- (2.42) Is 0 unless S is of the form {(ilj 1,k1 ), ..., (it,Jk,kt))

* where il, ..., it, Ji -" ir' kIl ... kt are all different.

Let Pt = ' Is.
S N

I5l = t

(2.41) will follow from the Bonferroni Inequalities (e.g. Feller [6]) if

we show that for fixed r

(2.43) li P = (e c/8)r/r!
n m

Let s I(i:d zI),, D i:di > 2) then, in view of (2.42) we have
1. 2

*. . . . . . . . . . .
,- o- o- ,- , - -- , o "o• " "oo"o " '. .' "• .-. * * °. . .. ", ****% .", "o ° .. . * . . . - -. •. . . . . / .
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p --- ( _. di(dI-1)) N(m-2r)/N(m)Pr (s-2r)'2 RC D2 i R

IRI r

i Using _%Q0 and r fixed gives (2.43) without difficulty, and so (2.40) is

proved.

Now simple estimations, using expectations, show

Pr (there exists v such that dMG nt,m(v) > I = dRG n+t,m (v)) (logn/n1 /2

and hence

Pr(MGn+t,m & and RGn+t,mc ) O(logn/n1/2)

and so (2.31), (2.35) and (2.40) give

li rR I e- e - 4 c / 8 "
-..im Pr(R1t,m IvI (RGn+,) I n) - :.. .

n~tv I nt,m

Thus, where

* am , -Pr(RGnt,m OR',IE(RGn+t,m )A "n'V I (RG+nt,m) " n)

we have

-4C
(2.44) hir~ a.'Pr(IE(RG )I - ml v1 (Rn )I n) - 1-e9 /8. l n+tm
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Now in view of (2.34) we can wite

(2.145) a,. Pr(Gn I IV (G tm,)l n= n Vl(tt,' =n

We can deduce our lmma from (2.33), (2.35), (2.441), (2.45) and

(2.46) a, Ia,_ 1 - i - O(n -1 / 2 ) fbr m > ml > m-2(logn) 2 .

To prove (2.46) let

SA(m) = 5(m') I where (M') is as defined in Lemma 2.6.

For GSA(m') let a(G) a I(ecE(G):G-ec gA

and for G W(m'-1) let

b(G) z l{eE(G):G~ec 9A(mMl> (n) -m, 1 nD (G)I.

Arguing as for (2.22) we have

* ~a(G) : b(G)
Ge (Mi) GC -(M'-1)

SA SA

and so arguing as for (2.23) we obtain

(2. 47) 21(..-, W)/..< ( ' 2, (-',

where 1lW) denotes the expected number of vertices of degree 1 in a
random graph chosen uniformly from l(01)..

A
2 / 2 "/ 2

We deduce from (2.27) that B1CU') C 2n where B is as in (2.28).

now "MI a A(IW)I/Ilq(m)I and so (2.46) now follows from (2.22), (2.23),

(2.28) and (2.47).

The reader familiar with [l] will realize that we had to work with

multIgraphI and proceed in this way because the probability that a graph

in 2(d) has no loops or multiple edges is too mall.

.. *o . . %*** .*-
i'.; . .. .. ",".. -" " '." ',." ";'',.; -:.-:'', .'-.'-.' .' '..'-.'., ; ',','', ".,'. ". '" "" ". ". "-.. . ..- ,... ."."....".. ."'.".. .,,. .,",".
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Proof of Theorem 1.1

* The case a~ x:> c follows immediately from Lemma 2.5, Lemma 2.7 and
An

*(2.30).

For a a=> g c n logn we simply repeat the argumients almost

unchanged. Fo r c~ > logn we have no conditioning problems as 6(G )>1n nm-

* a.3. in this case.

For cn =:> -- , -Cn o(loglogn) we can again repeat the argument fo r

c n:x> c without much change.

*If c na=> -- rather fast then we are unable to prove Lemma 2.6. The

* reader will observe that we only Just managed to close the gap in (2.214).

7.-
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~3.°

We now turn to the proof of Theorem 1.2. We first define a random

edge colored graph G(n,mk) as follows:

Start with Gn, and all its edges painted blue;

while d(G) < k do

begin

choose a vertex v with degree < k, uniformly at random;

Let X - -eV
( 2 ) -E(G): vce);

n

choose ecX uniformly at random and paint it red;

E(G): z E(G).J(e}

end

The following Lemma is taken from Bollobhs E31 and is given here for

completeness.

Lemma 3.1

Let I be a monotone graph property such that GeE implies 6(G) > k.

1 1
Let m= nlogn _ 5(k-1)nloglogn - nw where w-w(n) . and w(n) < logloglogn.

Then

G(n,m,k)cI a.s. - (r,z) = (r,n k ) a.s.

Proof

Consider an instance of G. Colour edges el~e 2 9 .ee blue. For i > m

paint e red if e is incident with a vertex of degree < k-1 in G Let

, m':T(r.lK). The blue-red subgraph of G. , is distributed exactly as

" G(nm,k) and so Gm, eu 8.s. as 1 is monotone. Furthermore Gi.I1 k Rk as

,C k.
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In view of this we can prove Theorem 1.2 if we can prove that

G(n u,k) ex a.s. where m is as defined in Lemma 3. 1. We shall use this

, value for m throughout this section.

* We state the following Loma which can easily be verified.

Lemma 3.2

Let GGn and let SMALL{veV :d (V)<logn/1O} and LARGE V -SMALL.nMnG

The following properties hold a.s.

(3.1a) a(G) = k-;

(3.1b) IHvcVn: dG(v) z k-1ll < logn;

1/2.
(3.1c) ISMALLI < n

(3.ld) no pair of small vertices are adjacent or share a common

neighbor;

(3.1e) (I ; SC-LARGE, ISI < n/logn implies ING(S)I > ISt logn/10; -

(3. 1f) dG(v) < 5logn for vcV.

From this We easily derive

Lemma 3.3

Let G = G(nm,k) and let SMALL, LARGE be as in Lemma 3.2. The G has

the following properties a.3.

(3.2) If (v,w) is a red edge then dG(v) = k and wcLARE, assuming

dG(v) _< dG(w);

Let X be a matching of G that is only incident with large vertices and let

H x G-X.

Then there exist real constants 0k, *k > 0 such

(3.3a) qAsC%, ISI < .A implies INH(S)t > kjSI;

(3.3b) I$1 > son implies 1(v,w)cE(G):vcS,wiSl Bknlogn.
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- 4I
P roof

(3.2) follow from (3.1b) and (3.1c). (33a) is proved in a similar way

to Lmma 2.2, and we can take 8k a. (lak)/2 in (3.2b)•

For non-negative integer h, if graph G contains h disjoint

h
hamtiltonian cycles H1,H ,•••Hh let G-UHi be called an h.-subgraph of G.

i= 1

Let *(G) (h,p) where

h maximum number of disjoint hamiltonian cycles in G;

0 if k=2h

p m axlmum cardinality of a matching if k = 2h+1
in any h-subgraph of 0 -

maximum length of a path if k > 2h+2
in any h-subgraph of G -

Thus Gelk if and only if *(G) = G(k,n) = (Lk/2J, Ln/2J (k-2,,2J)).

If *(G) : (h,p) we define a I-subgraph of G to be any h-subgrpah of G

containing either a matching of size p or a path of length p as the case

may be.

Lemma 3..4

Suppose G G(nmu,k) satisfies the conditions (a) and (b) of Lemma 3.2 and

let X be as in (b) there. Let s = renl, thaen for n large

(3.1) there exists a *-subgraph H of H:G-X, A(a,a 2 ...,at)}

A1A 2 ,...At > s, such that for i=1,2,...t, 1A I > t,

a A; and if a c A i then * a ai 't E(H) and *(H..) i #(H).

., , .,,d . .......... .. ..... (..,,,....::..

S.- . * ..* t.. *. 4 ~ b * . .:-,.

? . ~ * * * .. *** ** * ** ... .. * * * * *. 4-- .. :..
2 ~ ."° "°* ,
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Proof

* Let H be any *-subgraph of H.

*Suppose first that k 2h+1 and p < Ln/2J. Let A [a: a is left

exposed by some maximum cardinality matching of H [ a,a 2 ... ,atl. Let

A, Ia: a and aj are left exposed by some maximum cardinality matching of

HI A. Then we deduce as in Lemma 2.3 that IN-(A )I < IA~i and hence that

INH(Ai)I < 1cIA iI and hence that IA i I a

If k >2h+llet Pbea path of length pin Hand lota be

one endpoint of P. Pdsa [Ishows that there exists a set A1 such that

IN H(A I)I < 21A I and each bcA I is an endpoint of a path of length p

joining a1 and b. We see by reasoning as above that I A, I > a We must

show al NR,(A,). Now (3.3) can be used to show tha H is connected for a

large and so if a, eNjj(A, ) P is not a longest path of Hi or H contains h+1

disjoint hamiltonian cycles. We take A 1 a1}JUA, and repeat the argument

for aeA1 with any path of length p with a as endpoint. -

*We now use the coloring argument (as in Lemma 2.4) to prove

*Lemma 3.5

lim Pr(G(n,m,k)efl; 1

Proof

*Let 9 t~ - Ia-(n,m,k): (3.2) holds and G has exactly t red edgesi. Note
A

*that each Ge Sthas the same probability of being chosen. Next let t

IG6St:(3.2b) holds and *(G) O(k,n)}.

In view of (3-1b) and Lemma 3.2, this lemma will follow if we prove

*(3.5)

l* QUrn it[0 0 < t < 1lognl.
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Let w -rlogfl1 and for Gg Stlet Eb(G), E (G) denote the blue and red

edges respectively. Consider now all the ()ways of choosing w blue

edges and recoloring them green.

*.For Ge and X SE (G), II w, define

a(G,X) -I if (a) *(H) #(*G) where H -G-X;

(b) H satisfies (3.3);

(c) where H b.(V E b (G)-X), d(Hb) k- and Hb has exactly

t vertices of degree ic-i

-0 otherwise

Let 9 be the set of blue-red edge-colored graphs obtainable oy

deleting w blue edges from a graph G in S~
For lie2 let X H=IS -V n EH:there ests G-~l,Se with EbG

E b b(H) S and Er(G) E r(S), and let Am1 IS:X,:a(G(H,S),S)-I.j

* We prove (3.5) by showing

A
(3.6a) Ge S~implies a(G,X) > (1-o(1)) (m) C c)

tX.E b (G) wlogn

(3.Sb) H < (1 - k) tXHI (1 0 (1))'

for then

S - a(G,X) >(1-0(1)) (3) (I-

and
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•2W
H (t )wE IXI (1+o(1))

i!i!I

and (3.5) follows.

Proof of (3.6a)

Given Gc with *(G) = (h,p) choose h disjoint hamiltonian cycles

HlH 2 ... ,Hh plus a path or matching A of size p as necessary. Now there

are at least (1-o(1)) (m) (1-(k+3)/logn)w ways of choosing a matching X
h

that only meets small vertices of G and does not meet AJU Hi. For each
i-i :!:

such X, a(G,X) = 1, on using Lemma 3.3.

Proof of (3.6b)

Let He2. If H does not satisfy (3.4) or Hb does not have t vertices of

degree k-1 then H O. So assume these conditions hold. It follows that -

ScXH if and only if S - E(H) and S does not meet any vertices of

degree k-t in Hb. (We included the last condition in (3.4) in order to

give such a simple description of XH). Let H be the *-subgraph guaranteed

07 (3.3).

According to (3.3) we can only have a(G(H,X),X) I I if no edge of S

joins aicA to Ai. But there are at least (an 2 -k=)/2 possibilities for

chbosing such an edge (we subtract kn/2 to account for those that may

occur in E(H)-E(H)). (3.6b) follows along with the lemma.

U* "

.. % %.% ~ % * *~** **** *** * .s q . ....~ *. * .. . . . . . .
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Proof of Theorem 1.2

Just us~e Lemma 3.1 and Lemma 3.4.
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